69 research outputs found

    Sustainable reuse of public real estate assets meeting structural, conservation and territorial needs

    Get PDF
    Currently, the recovery of existing buildings assumes a fundamental role, especially the restoration and reuse of the large state-owned properties characterised by significant cultural values, but often underutilised or even abandoned. This wide patrimony can instead represent an opportunity to satisfy the still existing needs of settlements, infrastructures, and services, without further consumption of land. The paper analyses the problem of integrating the conservation-architectural-social criteria for defining new uses of state-owned buildings with the need to meet structural requirements and performance according to current Italian technical standards for construction. A methodological protocol is proposed, based on the definition of sets of indicators, aimed at quantifying the degree of sustainability of new use design hypothesis according to the impact in terms of demand for structural performance upgrading compared with the overall sustainability of the intervention. The methodology application to the case study of a military building is presented and discussed

    Prediction of Building Limestone Physical and Mechanical Properties by Means of Ultrasonic P-Wave Velocity

    Get PDF
    The aim of this study was to evaluate ultrasonic P-wave velocity as a feature for predicting some physical and mechanical properties that describe the behavior of local building limestone. To this end, both ultrasonic testing and compressive tests were carried out on several limestone specimens and statistical correlation between ultrasonic velocity and density, compressive strength, and modulus of elasticity was studied. The effectiveness of ultrasonic velocity was evaluated by regression, with the aim of observing the coefficient of determination r2 between ultrasonic velocity and the aforementioned parameters, and the mathematical expressions of the correlations were found and discussed. The strong relations that were established between ultrasonic velocity and limestone properties indicate that these parameters can be reasonably estimated by means of this nondestructive parameter. This may be of great value in a preliminary phase of the diagnosis and inspection of stone masonry conditions, especially when the possibility of sampling material cores is reduced

    EFFECTS OF SIX MONTHS TRAINING ON PHYSICAL CAPACITY AND METABOREFLEX ACTIVITY IN PATIENTS WITH MULTIPLE SCLEROSIS.

    Get PDF
    Patients with multiple sclerosis (MS) have an increased systemic vascular resistance (SVR) response during the metaboreflex. It has been hypothesized that this is the consequence of a sedentary lifestyle secondary to MS. The purpose of this study was to discover whether a 6-month training program could reverse this hemodynamic dysregulation. Patients were randomly assigned to one of the following two groups: the intervention group (MSIT, n = 11), who followed an adapted training program: and the control group (MSCTL, n = 10), who continued with their sedentary lifestyle. Cardiovascular response during the metaboreflex was evaluated using the post-exercise muscle ischemia (PEMI) method and during a control exercise recovery (CER) test. The difference in hemodynamic variables such as stroke volume (SV), cardiac output (CO), and SVR between the PEMI and the CER tests was calculated to assess the metaboreflex response. Moreover, physical capacity was measured during a cardiopulmonary test till exhaustion. All tests were repeated after 3 and 6 months (T3 and T6, respectively) from the beginning of the study. The main result was that the MSIT group substantially improved parameters related to physical capacity (+5.31 +/- 5.12 ml-min(-1)/kg in maximal oxygen uptake at T6) in comparison with the MSCTL group (-0.97 +/- 4.89 ml.min(-1)/kg at T6; group effect: p = 0.0004). However, none of the hemodynamic variables changed in response to the metaboreflex activation. It was concluded that a 6-month period of adapted physical training was unable to reverse the hemodynamic dys-regulation in response to metaboreflex activation in these patients

    Physical mechanical consolidation and protection of Miocenic limestone used on Mediterranean historical monuments: the case study of Pietra Cantone (southern Sardinia, Italy)

    Get PDF
    The present work aims to study the consolidating and protective chemical treatments of the Pietra Cantone, a Miocenic (lower Tortonian) limestone widely used in important monuments and historical buildings of Cagliari (southern Sardinia, Italy). Similar limestones of the same geological period have also been used in several important monuments of Mediterranean area, i.e., Malta and Gozo Islands, Matera (central Basilicata, Italy), Lecce (southern Puglia, Italy) and Balearic Islands (Spain). The Pietra Cantone limestone shows problems of chemical–physical decay, due to their petrophysical and compositional char- acteristics: high porosity (on average 28–36 vol%), low cemented muddy-carbonate matrix, presence of phyllosil- icates and sindepositional sea salts (\3%). So, after placed in the monument, this stone is easily alterable by weath- ering chemical processes (e.g., carbonate dissolution and sulfation) and also by cyclic mechanisms of crystalliza- tion/solubilization of salts and hydration/dehydration of hygroscopic phases of the clay component. To define the mineralogical-petrographic features (composition, texture) of limestone, the clay and salt crystalline phases, the optical microscope in polarized light and diffraction anal- ysis were used. To define the petrophysical characteristics (i.e., shape and size distribution of porosity, surface area(SBET), matrix microstructures, rock composition) and interactions of chemical treatments with rock, SEM–EDS analysis and N2 porosimetry with BET and BJH methods were used. To evaluate the efficacy of Na/K-silicates, ethyl silicate consolidants and protective nano-molecular silane monomer water repellent, the mechanical strengths (uni- axial compressive strength, point load and flexural resis- tance), water/helium open porosity, water absorption and vapour permeability data determined before and after the chemical treatments of the Pietra Cantone samples from monument were compared

    Wood in Civil Engineering

    No full text
    Wood is a natural building material: if used in building elements, it can play structural, functional and aesthetic roles at the same time. The use of wood in buildings, which goes back to the oldest of times, is now experiencing a period of strong expansion in virtue of the sustainable dimension of wood buildings from the environmental, economic and social standpoints. However, its use as an engineering material calls for constant development of theoretical and experimental research to respond properly to the issues involved in this. In the single chapters written by experts in different fields, the book aims to contribute to knowledge in the application of wood in the building industry
    • …
    corecore